Image from TERRA
Mon, 30 Oct 2017 12:25 EDT

Former Tropical Storm Saola transitioned into an extra-tropical storm on Oct. 29 as it tracked southeast of the big island of Japan.

Image from TERRA
Tue, 24 Oct 2017 11:36 EDT

When Typhoon Lan made landfall in Japan on Oct. 22, the Global Precipitation Measurement mission core satellite or GPM analyzed the storm and added up the high rainfall that it generated.

Image from TERRA
Tue, 24 Oct 2017 09:22 EDT

A new image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite shows the growing fire scar on the landscape.

Category: News and Events

News and Events

Terra on the Earth Observatory: February

February 19, 2016
Ash Plume and Sea Ice Near Zhupanovsky – Since October, 2015 Zhupanovsky volcano in far eastern Russia has periodically been spewing ash into the atmosphere.  This MODIS image from February 13, 2016 shows an ash plume from Zhupanovsky volcano, which resulted in a code-red for air travel in the region.

Sea surface temperatures indicated that the warm "blob" has dissipated. NASA Earth Observatory image by Jesse Allen, using microwave and infrared multi-sensor SST data from Remote Sensing Systems.

February 12, 2016
The Demise of the Warm Blob – Ocean surface temperatures, showed a warm “blob” off the northern United State’s coast. This cell of warm ocean water in the Pacific Ocean no longer is present, having lasted from the winter of 2013 through December of 2015.

February 17, 2016
Waves Above and Below the Water – The Moderate Imaging Spectroradiometer on NASA’s Terra satellite acquired an image of wave patterns in the sky and in the water off the coast of Western Australia.

MODIS image of cloud streets over the Great Lakes.

February 11, 2016
Cloud Streets Over the Great Lakes – MODIS captured this image of cloud streets crossing the Great Lakes.

February 10, 2016
Snow in the Central U.S. – Snow from a blizzard blanketed parts of the Midwest. This image from Terra’s Moderate Imaging Spectroradiometer (MODIS) captured the snow that remained after the clouds cleared over Nebraska.

February 6, 2016
Open- and Closed-Celled Clouds over the Pacific – Terra’s Moderate Imaging Spectroradiometer (MODIS) captured in one image examples of two different types of convective clouds, open-celled and closed-celled.

February 5, 2016
Mount Erebus, Antarctica – Mount Erebus in Antarctica, thought to be the most southern volcano is still active. The Advanced Spaceborne Thermal Emissions and Reflection Radiometer (ASTER) on NASA’s Terra satellite captured images in visible and infrared, showing not just the volcano, but also the lava lake in its interior.

safricandvipa_tmo_201512

February 3, 2016
Drought in Southern Africa – Normalized Difference Vegetation Index (NDVI) data from Terra’s Moderate Imaging Spectroradiometer (MODIS) sensor are being used to track drought conditions in southern Africa, analyzing the effects of the current strong El Niño on vegetation.

Congratulations, ESA on the Launch of Sentinel 3A!

Sentinel-3A, the European Space Agency (ESA) – developed Earth observing satellite successfully launched on February 16, 2016. Sentinel-3A is part of Europe’s Copernicus environment program and carries four sensors: The Sea and Land Surface Temperature Radiometer (SLSTR), the Ocean Land Colour Instrument (OLCI), the Synthetic Aperture Radar (SAR) Altimeter, and the microwave radiometer.

Researchers who use Terra MODIS data are particularly interested in OLCI. OLCI images the earth similarly to MODIS on NASA’s Terra and Aqua satellites. It measures specific ocean color, vegetation and atmospheric measurements at 300m spatial resolution and at 1270 km swath width. Sentinel 3A has a morning crossing time like Terra, making Sentinel-3A the most similar to Terra satellite currently flying. Like MODIS data, Sentinel data will be free of charge and provided worldwide.

Congratulations, ESA!

ESA: Sentinel and the Copernicus program

New environmental observation methods see the forest for the trees

Walong Nature Reserve

Researchers at Michigan State University’s  Center for Systems Integration and Sustainability are combining images from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat with information taken on the ground, to increase understanding of how biodiversity is changing in China’s Wolong Nature Reserve, home to the giant panda.

Read the whole article from Michigan State University.

New Satellite-Based Maps to Aid in Climate Forecasts

 Global map of the average amount of time that live biomass carbon and dead organic carbon spend in carbon reservoirs around the world, in years. Credit: A. Anthony Bloom

Global map of the average amount of time that live biomass carbon and dead organic carbon spend in carbon reservoirs around the world, in years. Credit: A. Anthony Bloom

February 8, 2016

New, detailed maps of the world’s natural landscapes created using NASA satellite data could help scientists better predict the impacts of future climate change.

The maps of forests, grasslands and other productive ecosystems provide the most complete picture yet of how carbon from the atmosphere is reused and recycled by Earth’s natural ecosystems.

Scientists at the University of Edinburgh, Scotland, United Kingdom; NASA’s Jet Propulsion Laboratory, Pasadena, California; and Wageningen University, Netherlands, used a computer model to analyze a decade of satellite and field study data from 2001 to 2010. The existing global maps of vegetation and fire activity they studied were produced from data from NASA’s Terra, Aqua and ICESat spacecraft. The researchers then constructed maps that show where — and for how long — carbon is stored in plants, trees and soils.

The maps reveal how the biological properties of leaves, roots and wood in different natural habitats affect their ability to store carbon across the globe, and show that some ecosystems retain carbon longer than others. For example, large swaths of the dry tropics store carbon for a relatively short time due to frequent fires, while in warm, wet climates, carbon is stored longer in vegetation than in soils.

Although it is well known that Earth’s natural ecosystems absorb and process large amounts of carbon dioxide, much less is known about where the carbon is stored or how long it remains there. Improved understanding about how carbon is stored will allow researchers to more accurately predict the impacts of climate change.

Study first author Anthony Bloom, a JPL postdoctoral scientist, said: “Our findings are a major step toward using satellite imagery to decipher how carbon flows through Earth’s natural ecosystems from satellite images. These results will help us understand how Earth’s natural carbon balance will respond to human disturbances and climate change.”

Professor Mathew Williams of the University of Edinburgh’s School of GeoSciences, who led the study, said, “Recent studies have highlighted the disagreement among Earth system models in the way they represent the current global carbon cycle. “Our results constitute a useful, modern benchmark to help improve these models and the robustness of global climate projections.”

To generate values for each of the 13,000 cells on each map, a supercomputer at the Edinburgh Compute and Data Facility ran the model approximately 1.6 trillion times.

New data can be added to the maps as it becomes available. The impact of major events such as forest fires on the ability of ecosystems to store carbon can be determined within three months of their occurrence, the researchers say.

The study, published Feb. 2 in the Proceedings of the National Academy of Sciences, was funded by the Natural Environment Research Council. The California Institute of Technology in Pasadena manages JPL for NASA.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit:

http://www.nasa.gov/earth

 

Media Contact

Alan Buis Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0474
Alan.buis@jpl.nasa.gov

Corin Campbell
University of Edinburgh
011-44-0131-650-6382
Corin.campbell@ed.ac.uk

2016-037

Study: Long-Term Global Warming Needs External Drivers

Terra/CERES views the world in outgoing longwave radiation (left) and reflected solar radiation (right). Image Credit: NASA

Terra/CERES views the world in outgoing longwave radiation (left) and reflected solar radiation (right). Image Credit: NASA

February 8, 2016

A study by scientists at NASA’s Jet Propulsion Laboratory in Pasadena, California, and Duke University in Durham, North Carolina, shows, in detail, the reason why global temperatures remain stable in the long run unless they are pushed by outside forces, such as increased greenhouse gases due to human impacts.

Lead author Patrick Brown, a doctoral student at Duke’s Nicholas School of the Environment, and his JPL colleagues combined global climate models with satellite measurements of changes in the energy approaching and leaving Earth at the top of the atmosphere over the past 15 years. The satellite data were from the Clouds and the Earth’s Radiant Energy System (CERES) instruments on NASA’s Aqua and Terra spacecraft. Their work reveals in new detail how Earth cools itself back down after a period of natural warming.

Scientists have long known that as Earth warms, it is able to restore its temperature equilibrium through a phenomenon known as the Planck Response. The phenomenon is an overall increase in infrared energy that Earth emits as it warms. The response acts as a safety valve of sorts, allowing more of the accumulating heat to be released through the top of Earth’s atmosphere into space.

The new research, however, shows it’s not quite as simple as that.

“Our analysis confirmed that the Planck Response plays the dominant role in restoring global temperature stability, but to our surprise, we found that it tends to be overwhelmed locally by heat-trapping changes in clouds, water vapor, and snow and ice,” Brown said. “This initially suggested that the climate system might be able to create large, sustained changes in temperature all by itself.”

A more detailed investigation of the satellite observations and climate models helped the researchers finally reconcile what was happening globally versus locally.

“While global temperature tends to be stable due to the Planck Response, there are other important, previously less appreciated, mechanisms at work, too,” said Wenhong Li, assistant professor of climate at Duke. These mechanisms include the net release of energy over anomalously cool regions and the transport of energy to continental and polar regions.  In those regions, the Planck Response overwhelms positive, heat-trapping local energy feedbacks.

“This emphasizes the importance of large-scale energy transport and atmospheric circulation changes in reconciling local versus global energy feedbacks and, in the absence of external drivers, restoring Earth’s global temperature equilibrium,” Li said.

The researchers say the findings may finally help put the chill on skeptics’ belief that long-term global warming occurs in an unpredictable manner, independently of external drivers such as human impacts.

“This study underscores that large, sustained changes in global temperature like those observed over the last century require drivers such as increased greenhouse gas concentrations,” said Brown.

“Scientists have long believed that increasing greenhouse gases played a major role in determining the warming trend of our planet,” added JPL co-author Jonathan Jiang. “This study provides further evidence that natural climate cycles alone are insufficient to explain the global warming observed over the last century.”

The research is published this month in the Journal of Climate. The study was funded by the National Science Foundation and NASA.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit:

http://www.nasa.gov/earth

Alan Buis
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0474
Alan.buis@jpl.nasa.gov

Tim Lucas
Duke University, Durham, North Carolina
919-613-8084
tdlucas@duke.edu

2016-036