Image from TERRA
Mon, 03 Feb 2020 10:23 EST

Australia has already been in a fiery situation for months so another fire starting in the Canberra region and spreading so quickly is nothing short of a tragedy for this country.

Image from TERRA
Fri, 31 Jan 2020 10:55 EST

Huge clouds of smoke spilled off the southeastern coast of Australia in this NASA Terra satellite image taken with the MODIS instrument (Moderate Resolution Imaging Spectroradiometer) on Jan. 31, 2020.

Image from TERRA
Thu, 16 Jan 2020 10:13 EST

In the northern Mexican state of Cohuilla lies the Cuatro Cienegas Basin.

Atmosphere

Understanding the composition of Earth’s atmosphere is important for both air quality and climate change. The atmosphere is changing. Some of the gases that now enter the atmosphere from both human activity and natural processes are hazardous to our health. Rising greenhouse gas concentrations are causing Earth’s climate to warm.

Satellites allow NASA to identify sources of air pollution and track how chemicals move through the atmosphere. They help measure how much greenhouse gases are causing Earth to warm, and how warming is changing the atmosphere.

 

Terra and Atmospheric Composition

Terra is the first satellite to provide integrated measurements of the processes connecting the atmosphere to emissions from activity on the ground. For example, Terra instruments measure both fires and smoke. In particular, Terra instruments measure aerosols (particles in the atmosphere) and carbon monoxide.

 

Aerosols

Aerosols come from a variety of sources, both natural and anthropogenic. MISR and MODIS both measure the concentration of aerosols in the atmosphere and, in some cases, provide insight into the sources of aerosol pollution. MISR can record the height of aerosol plumes in the atmosphere. Aerosols can shade the Earth by reflecting sunlight. CERES measures how much energy aerosols reflect or absorb.

 

Carbon Monoxide

While carbon monoxide (CO) is not itself a greenhouse gas, CO is chemically linked with methane, ozone, and carbon dioxide, and therefore impacts both climate and air quality.  Primary sources of CO include fossil-fuel burning, biomass burning and methane oxidation. MOPITT measurements of CO concentrations in the troposphere are based on observations made with a suite of gas correlation radiometers operating in two CO-sensitive spectral bands.  MOPITT CO products are used to study the movement of pollution in the atmosphere, to quantify CO emissions and to support air quality forecasts.

Terra Atmospheric Science in the News