Image from TERRA
Sat, 10 Nov 2018 11:10 EST

Within a day, the fire had consumed 70,000 acres of land.

Image from TERRA
Tue, 30 Oct 2018 13:30 EDT

This summer and early fall, beachgoers and residents along Florida’s central Gulf Coast endured an unpleasant and, at worst, debilitating aquatic annoyance: a dangerous red tide caused by the harmful algae Karenia brevis.

Image from TERRA
Wed, 10 Oct 2018 13:03 EDT

More than 400 miles above Earth, a satellite the size of a school bus is earning its frequent flyer miles. On Oct. 6, NASA’s Terra completed 100,000 orbits around Earth. Terra, which launched Dec. 18, 1999, is projected to continue operation into the 2020s.

Month: August 2016

NASA’s MISR Views America’s National Parks in 3-D

IDL TIFF file

NASA  Image from NASA/GSFC/LaRC/JPL-Caltech, MISR Team. Originally posted on JPL’s photojournal.

 

Just in time for the U.S. National Park Service’s Centennial celebration on Aug. 25, NASA’s Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA’s Terra satellite is releasing four new anaglyphs that showcase 33 of our nation’s national parks, monuments, historical sites and recreation areas in glorious 3D.

Shown in the annotated image are Lewis and Clark National Historic Park, Mt. Rainier National Park, Olympic National Park, Ebey’s Landing National Historical Reserve, San Juan Island National Historic Park, North Cascades National Park, Lake Chelan National Recreation Area, and Ross Lake National Recreation Area (also Mt. St. Helens National Volcanic Monument, administered by the U.S. Forest Service).

MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR’s vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east.

View the rest of the 33 national parks, monuments, historical sites and recreation areas in these other 3 images provided by MISR.

Southwest Splendor

Wyoming Wonders

California Dreaming

Long Smoke Plumes from California’s Destructive Blue Cut Fire Spotted by NASA’s MISR

PIA20888_fig1

NASA  Image from NASA/GSFC/LaRC/JPL-Caltech, MISR Team. Originally posted on JPL’s photojournal.

On Aug. 16, 2016, at around 10:30 a.m., a brush fire ignited in the Cajon Pass east of Los Angeles, just to the west of Interstate 15. Within a matter of hours, extreme temperatures, high winds and low humidity allowed the fire to spread rapidly, burning through brush left tinder-dry by years of drought. Firefighters quickly responded, ordering the evacuation of about 83,000 people in and around the Cajon Pass, Wrightwood, Lytle Creek, Oak Hills and surrounding areas. An as-yet uncounted number of homes and structures have burned, and Interstate 15 remains closed to downed power lines and barrier damage. By Aug. 17, the fire had expanded to more than 30,000 acres and remains zero percent contained as some 1,300 firefighters continue to battle to save homes and evacuate residents.

The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA’s Terra satellite passed over the region on Aug. 17 around 11:50 a.m. PDT and captured this natural-color image from MISR’s 70-degree forward-viewing camera, which covers an areas about 257 miles (414 kilometers) wide. The oblique view angle makes the smoke more apparent than it would be in a more conventional vertical view. The Los Angeles metropolitan area is the large gray area on the coast in the center of the image. Three plumes from the Blue Cut Fire are clearly visible in the mountains to the north. This oblique view also shows an enormous cloud of smoke spreading northeastward over a significant portion of eastern California and Nevada. This smoke probably originated from the fire as it consumed almost 20,000 acres on the evening of the 16th and traveled north overnight.

Also visible from this oblique view is considerable haziness filling California’s Central Valley, to the northwest of the Blue Cut Fire. This haziness is most likely due to smoke from several other fires burning in California, including the Soberanes Fire near Monterey, the Clayton Fire that has destroyed 175 structures north of San Francisco, the Chimney Fire and the Cedar Fire, which is visible in the image in the southern Sierra Nevada. The total number of acres burned in California this year has tripled in just the past week.

Severe 2015 Indonesian Fire Season Linked to El Niño Drought

Palangkaraya, Central Kalimantan, Indonesia, September 2011. Photo by Rini Sulaiman for CIFOR Center for International Forestry Research

Data from five instruments on the NASA Aura, Terra, and Aqua satellites tracked active fires, carbon monoxide, and aerosol optical depth in the atmosphere” in Indonesia. July to October was especially dry because of the 2015-16 El Niño. The abundance of dry fuel contributed to sparking a severe fire season with widespread effects on air quality. Learn about more on nasa.gov.

Deadly Fires Engulfing Madeira seen by NASA’s MISR

PIA20887_hires

The Multi-angle Imaging Spectrodiometer (MISR) instrument on NASA’s Terra satellite acquired an image of a large wildfire on the Island of Madeira, part of the autonomous region of Portugal.  Madeira’s capital city, Funchal, also caught fire, burning homes and leading to the evacuation of a thousand people. Read more on JPL’s Photojournal.

Site of the 2016 Summer Olympic Games viewed by NASA’s MISR

PIA20885_modest

NASA  Image from NASA/GSFC/LaRC/JPL-Caltech, MISR Team. Originally posted on JPL’s photojournal.

The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA’s Terra satellite passed directly over Rio de Janeiro, Brazil, on Aug. 2, 2016, just prior to the opening of the Summer Olympic Games. On the left is an image from MISR’s nadir (downward-looking) camera; the width of the image is 235 miles (378 kilometers), and Rio de Janeiro is visible as the large gray area on the coast in the center. The black asterisk marks the location of the Maracanã Stadium in downtown, where the opening ceremonies were held.

In the weeks leading up to the Aug. 5 opening ceremonies in Rio de Janeiro, there have been reports of elevated levels of particulate matter in the region. Particulate matter refers to tiny airborne droplets or pieces of soot and dust that can end up in the lungs, comprising an all-too-common problem for many cities around the world.

MISR data are routinely used to estimate the amount of air pollution via measurements of aerosol optical depth, which is a measure of how much incoming light from the sun is blocked by particles in the atmosphere. On the right, a map of aerosol optical depth is superimposed on the image. Individual squares making up this map measure 2.7 miles (4.4 kilometers) on a side, and holes in the map occur where an aerosol amount could not be determined, such as where clouds are present. Optical depth over Rio is slightly elevated compared to its surroundings, most likely due to the presence of air pollution, with values from 0.15-0.25. For reference, an optical depth of 0.2 corresponds to light haze.

The product shown here is a prototype of a new version of the MISR aerosol product to be publicly released in the near future, and increases the spatial resolution of the aerosol information by a factor of 16 compared to the currently available product, making it possible to observe the fine details of optical depth over urban areas.

These data were captured during Terra orbit 88426. MISR was built and is managed by NASA’s Jet Propulsion Laboratory, Pasadena, California, for NASA’s Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA’s Goddard Space Flight Center, Greenbelt, Maryland. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center, Hampton, Virginia. JPL is a division of the California Institute of Technology in Pasadena.