Image from TERRA
Mon, 30 Oct 2017 12:25 EDT

Former Tropical Storm Saola transitioned into an extra-tropical storm on Oct. 29 as it tracked southeast of the big island of Japan.

Image from TERRA
Tue, 24 Oct 2017 11:36 EDT

When Typhoon Lan made landfall in Japan on Oct. 22, the Global Precipitation Measurement mission core satellite or GPM analyzed the storm and added up the high rainfall that it generated.

Image from TERRA
Tue, 24 Oct 2017 09:22 EDT

A new image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite shows the growing fire scar on the landscape.

Tag: MISR

MISR News and Events

MISR Where on Earth…?

Are you ready for a challenge? Become a geographical detective and solve the latest mystery quiz from NASA’s MISR (Multi-angle Imaging SpectroRadiometer) instrument onboard the Terra satellite. Prize submissions for perfect scores accepted until Wednesday, June 28, at 4:00 p.m. PDT. Happy sleuthing!

 

Take the quiz here: http://climate.nasa.gov/quizzes/misr_quiz_29

NASA’s MISR Spots Alaskan Volcano’s Latest Eruption

The tiny Aleutian island of Bogoslof in Alaska, erupting regularly since December 2016, produced fresh activity on Sunday, May 28, 2017. Bogoslof is a stratovolcano fueled by the subduction of the Pacific Plate under the North American Plate and forms part of the larger Aleutian Arc, which includes more than 60 volcanoes on the Aleutian Islands and the Aleutian Range on the Alaska mainland. Previous to its recent period of activity, Bogoslof had last erupted in 1992, and its above-water surface area was a mere 0.11 square miles (0.29 square kilometers). As of March 11, the most recent data available, the area of the island had tripled to 0.38 square miles (0.98 square kilometers). The event on May 28 produced an ash cloud that reached 40,000 feet (12 km) in altitude, causing the Alaskan Volcano Observatory to issue a red alert for air travel in the area. Volcanic ash can cause major damage to aircraft engines, and the region is close to several major air routes between North America and Asia.

On May 28, 2017, at approximately 2:23 p.m. local time, NASA’s Terra satellite passed over Bogoslof, less than 10 minutes after the eruption began. MISR has nine cameras that view Earth at different angles. It takes slightly less than seven minutes for all nine cameras to view the same location on Earth. On the left, an animation made from the images from the nine MISR cameras, captured between 2:19 and 2:26 p.m., demonstrates how the angled views give a glimpse of the underside of the growing plume of volcanic ash, showing the eruption column widening into the cloud at the top.

Data from MISR’s nine cameras can also be used to calculate the height of the plume, based on the apparent movement of the cloud from one camera to another. On the right, a map of plume height is plotted over the downward-looking image. The top of the cloud was approximately 10,000 feet (3 kilometers) high at this time. Below the image is a scatterplot of the heights, with blue points representing heights corrected by the northwesterly winds reported by the Alaskan Volcano Observatory during the eruption, and red points representing uncorrected heights. Lower points at either side of the plume represent retrievals of the eruption column.

These data were captured during Terra orbit 92786. The stereoscopic analysis was performed using the MISR INteractive eXplorer (MINX) software tool, which is publicly available through the Open Channel Foundation at https://www.openchannelsoftware.com/projects/MINX. Other MISR data are available through the NASA Langley Research Center; for more information, go to https://eosweb.larc.nasa.gov/project/misr/misr_table. MISR was built and is managed by NASA’s Jet Propulsion Laboratory in Pasadena, California, for NASA’s Science Mission Directorate in Washington, D.C. The Terra spacecraft is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, Virginia. JPL is a division of the California Institute of Technology in Pasadena.

Credit: NASA/GSFC/LaRC/JPL-Caltech, MISR Team, article by Abbey Nasten

Ralph Kahn: “The Stories Data Tell.”

February 1, 2016


Headshot of Ralph KahnNASA climate scientist Ralph Kahn presented a Maniac lecture at Goddard Space Flight Center entitled, “The Stories Data Tell.” At an early age, Ralph found that separating causality from coincidence can be the lynchpin of understanding, and at times can help identify prerogatives or highlight the path toward the better options. Ralph shared his experiences, professional, personal, and at the intersection of the two, where the difference seemed to matter. And how data can help address this challenge, providing evidence one way or the other – sometimes!


Ralph Kahn, a Senior Research Scientist at NASA’s Goddard Space Flight Center, received his PhD in applied physics from Harvard University. He spent 20 years as a Research Scientist and Senior Research Scientist at the Jet Propulsion Laboratory, where he studied climate change on Earth and Mars, and also led the Earth & Planetary Atmospheres Research Element. Kahn is Aerosol Scientist for the NASA Earth Observing System’s Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA’s Terra satellite. He focuses on using MISR’s unique observations, combined with other data and numerical models, to learn about wildfire smoke, desert dust, volcano and air pollution particles, and to apply the results to regional and global climate-change questions. Kahn has lectured on Climate Change and atmospheric physics at UCLA, Caltech and many other venues, and is editor and founder of PUMAS, the on-line journal of science and math examples for pre-college education.

Terra showcased in 100 Remote Sensing Uses from GIS Geography

100-remote-sensing-uses-logo-top

Image from GIS Geography. 100 Earth Shattering Uses and Applications of Remote Sensing.

GIS Geography published a list of 100 uses and applications of remote sensing, where data from NASA’s Terra satellite appeared in over 10%.

Listed below are some examples of Terra data uses that made the list (numbered by their original order in the article from GIS Geography):

13. Identifying forest stands and tallying their area to estimate forest supplies (MODIS)

26. Fighting wildfires by planning firefighter dispatch (MODIS)

27. Monitoring air quality in the lower atmosphere (MOPITT)

38. Keeping tabs on the shift from rural to urban growth (MODIS)

39. Quantifying crop conditions with Normalized Difference Vegetation Index (NDVI from MODIS)

59. Monitoring active volcanoes using thermal remote sensing (ASTER, MISR, and MODIS)

66. Looking at the Earth as an art masterpiece NASA’s Earth as Art | NASA Visible Earth

70. Comparing climatic factors from past to present (MODIS, CERES, MOPITT)

75. Studying geology of the Earth’s surface (ASTER, MISR, MODIS)

77. Measuring albedo for Earth’s radiation budget (CERES)

83. Delineating watersheds using DEMs for hydrologists (ASTER)

85. Using a least-cost analysis and vegetation to understand wildebeest migration (NDVI from MODIS)

Read the whole list and learn more about each of the uses and applications of remote sensing at 100 Earth Shattering Remote Sensing Applications Uses from GIS Geography

In Africa, More Smoke Leads to Less Rain

earth20150806b-16

The Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA’s Aqua satellite captured this image of numerous fires burning in the transition zone between the Sahara Desert to the north and the greener savannas to the south. The image, dating from November 2004, includes parts of Sudan, Chad and other nations to the south and west. Image credit: NASA

A new study is the first to use satellite observations to look at how smoke affects rainfall. Specifically focusing on agricultural fires in North Africa that reduce the amount of rainfall during the dry season.

African agricultural fires, a major source of fires globally, are used to increase agricultural productivity and clear land for farming.  Large plumes are formed by these fires, impacting weather and precipitation patterns, while carrying nutrients to land and ocean regions downwind.

Using satellite data from three NASA satellites from varying passover times along with weather records, Michael Tosca and his colleagues from NASA’s Jet Propulsion Laboratory in Pasadena, California, assessed how microscopic smoke particles affect the formation of clouds and rainfall in Africa, north of the equator and south of the Saharan Desert.

Using images of smokey areas taken by  the Multi-angle Imaging Spectroradiometer instrument (MISR) on-board Terra from 2006 to 2010, Tosca and his colleagues were able to match “each smoky image with a smoke-free scene in statistically identical weather conditions.” From this information they compared the changing cloud cover throughout the day, using data from Tropical Rainfall Measuring Mission (TRMM) and Aqua, which pass over the same region at later times in the day.

Clouds need small airborne particles, aerosols, to act as a nucleus on which water vapor can condense and form clouds. Black carbon, a common aerosols in African fires, absorbs radiation from the sun and heats up the surrounding air.  When a layer of this soot-filled warm air forms, rising air from Earth’s surface is blocked by the warm layer, causing air from Earth’s surface to spread out horizontally. Rain clouds are produced from air moving up in updrafts and then condensing and falling, a process called convection.  When the air cannot penetrate the soot-filled layer, rain cloud formation is suppressed. “The researchers found that less cloud cover built up throughout the day in smoky scenes than in scenes without smoke.”

The NASA press release is available online at: http://www.jpl.nasa.gov/news/news.php?feature=4681

The study is available online at: http://onlinelibrary.wiley.com/doi/10.1002/2015GL065063/full

Read More on NASA’s Earth Observatory