Image from TERRA
Fri, 17 Aug 2018 13:56 EDT

NASA's Terra satellite looked at water vapor and cloud top temperatures when it passed over the recently strengthened Typhoon Soulik in the Northwestern Pacific Ocean.

Image from TERRA
Mon, 13 Aug 2018 14:29 EDT

The largest fire in California's history, the Mendocino Complex, is still spewing clouds of smoke across the state.

Image from TERRA
Mon, 13 Aug 2018 12:38 EDT

After Tropical Storm Yagi made landfall in China, NASA's Aqua satellite saw the storm was moving inland and dropping heavy rainfall.

Tag: CERES

CERES News and Events

September 2018 CERES Science Team Meeting

CERES will be hosting the 29th annual CERES Science Team Meeting jointly with GERB and ScaRaB from September 10 – 13 at NCAR in Boulder, Colorado. The meeting will showcase scientific findings and plans for the studying Earth’s radiation and energy from space.

Study: Long-Term Global Warming Needs External Drivers

Terra/CERES views the world in outgoing longwave radiation (left) and reflected solar radiation (right). Image Credit: NASA

Terra/CERES views the world in outgoing longwave radiation (left) and reflected solar radiation (right). Image Credit: NASA

February 8, 2016

A study by scientists at NASA’s Jet Propulsion Laboratory in Pasadena, California, and Duke University in Durham, North Carolina, shows, in detail, the reason why global temperatures remain stable in the long run unless they are pushed by outside forces, such as increased greenhouse gases due to human impacts.

Lead author Patrick Brown, a doctoral student at Duke’s Nicholas School of the Environment, and his JPL colleagues combined global climate models with satellite measurements of changes in the energy approaching and leaving Earth at the top of the atmosphere over the past 15 years. The satellite data were from the Clouds and the Earth’s Radiant Energy System (CERES) instruments on NASA’s Aqua and Terra spacecraft. Their work reveals in new detail how Earth cools itself back down after a period of natural warming.

Scientists have long known that as Earth warms, it is able to restore its temperature equilibrium through a phenomenon known as the Planck Response. The phenomenon is an overall increase in infrared energy that Earth emits as it warms. The response acts as a safety valve of sorts, allowing more of the accumulating heat to be released through the top of Earth’s atmosphere into space.

The new research, however, shows it’s not quite as simple as that.

“Our analysis confirmed that the Planck Response plays the dominant role in restoring global temperature stability, but to our surprise, we found that it tends to be overwhelmed locally by heat-trapping changes in clouds, water vapor, and snow and ice,” Brown said. “This initially suggested that the climate system might be able to create large, sustained changes in temperature all by itself.”

A more detailed investigation of the satellite observations and climate models helped the researchers finally reconcile what was happening globally versus locally.

“While global temperature tends to be stable due to the Planck Response, there are other important, previously less appreciated, mechanisms at work, too,” said Wenhong Li, assistant professor of climate at Duke. These mechanisms include the net release of energy over anomalously cool regions and the transport of energy to continental and polar regions.  In those regions, the Planck Response overwhelms positive, heat-trapping local energy feedbacks.

“This emphasizes the importance of large-scale energy transport and atmospheric circulation changes in reconciling local versus global energy feedbacks and, in the absence of external drivers, restoring Earth’s global temperature equilibrium,” Li said.

The researchers say the findings may finally help put the chill on skeptics’ belief that long-term global warming occurs in an unpredictable manner, independently of external drivers such as human impacts.

“This study underscores that large, sustained changes in global temperature like those observed over the last century require drivers such as increased greenhouse gas concentrations,” said Brown.

“Scientists have long believed that increasing greenhouse gases played a major role in determining the warming trend of our planet,” added JPL co-author Jonathan Jiang. “This study provides further evidence that natural climate cycles alone are insufficient to explain the global warming observed over the last century.”

The research is published this month in the Journal of Climate. The study was funded by the National Science Foundation and NASA.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA’s Earth science activities, visit:

http://www.nasa.gov/earth

Alan Buis
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0474
Alan.buis@jpl.nasa.gov

Tim Lucas
Duke University, Durham, North Carolina
919-613-8084
tdlucas@duke.edu

2016-036

Terra and the Hottest Year on Record

Global temperature anomolies

2015 was the warmest year since modern record-keeping began in 1880, according to a new analysis by NASA’s Goddard Institute for Space Studies. The record-breaking year continues a long-term warming trend — 15 of the 16 warmest years on record have now occurred since 2001. Credits: Scientific Visualization Studio/Goddard Space Flight Center

2015 was the hottest year ever recorded*, but what does Terra have to do with it?

On January 20th, 2016, scientists from NASA’s Goddard Institute for Space Studies (GISS) and National Oceanic and Atmospheric Administration (NOAA) released their analysis based on data gathered on Earth’s surface temperatures. There are two primary sources of data, ground measurements and satellite. While GISS and NOAA studies relied on surface-based measurements, data from satellite instruments, such as those on-board NASA’s Terra satellite are critical for better understanding of global temperatures as a function of time.

“The length and quality of the Terra data record makes it well suited as a check of the global temperature results and can help guide choices on ways to process the surface data,” according the Kurt Thome, Terra project scientist. Three of the Terra sensors have data that are well suited to serve as a validation source, allowing the researchers and scientists to go back and check their data. If surface and satellite measurements are the same, then the scientists responsible for creating the data products can conclude that the product is accurate. This increases confidence in the satellite data’s accuracy as well as verifying that the ground measurements are also accurate. When accurate data is put into the climate models the accuracy of the models is increased.

The Moderate Imaging Spectroradiometer (MODIS) measures Land Surface Temperatures (LST) and Sea Surface Temperatures (SST). There are two MODIS instruments in orbit, one on Terra and the other on Aqua. While the data analyzed in the NASA/NOAA report relies primarily on data from ground stations, the data gathered by MODIS can help “fill in the blanks” of areas where there are not many ground observations available. The data from MODIS, not only can be used to verify that ground instruments are working correctly, but it can also be used to add values to the climate models, that may otherwise be left blank.

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) also on NASA’s Terra Satellite, can sense temperature emissions, but at a higher resolution than MODIS.   In fact, ASTER is responsible for the highest resolution global emissivity database. While emissivity isn’t the same as land surface temperature the two are linked because how well a material emits combined with its temperature determines how much energy is given off. When temperatures rise, areas that were once vegetated can become arid causing a change in the emissivity and further changing how energy is distributed between vegetated and arid regions. ASTER, with its narrow swath and high resolution, required several years to create its global emissivity product. Combining the ASTER results with the daily MODIS measurements allows MODIS scientists to retrieve daily LST.

Finally, Clouds and the Earth’s Radiant Energy System (CERES) measures both emitted energy from the earth and solar-reflected energy. Combining these data with the amount of incident solar energy allows CERES scientists to do a full accounting of the Earth’s energy budget. Less reflected energy and greater emitted energy implies a warming planet. CERES, through measuring the amount of energy in the form of heat that is coming from Earth, can be used to validate ground measurements from weather stations. Conversely the ground stations can validate the measurements taken by CERES. Like MODIS and ASTER, this helps increase confidence in the current climate models.

While satellite monitoring of the Earth is relatively new compared the hundreds of years of historic records, satellite data is increasingly being used to help validate the most recent additions to the historic record. Satellite data allows scientists to get global coverage and increase confidence in the data that feeds climate models. Even though Earth is warming, satellite data are better equipped to model the increased temperatures and help citizens and policymakers understand the implications.

 

Read the press release from NASA GISS and NOAA

Read more on NASA’s Earth Observatory

*modern record keeping began in 1880.

Terra showcased in 100 Remote Sensing Uses from GIS Geography

100-remote-sensing-uses-logo-top

Image from GIS Geography. 100 Earth Shattering Uses and Applications of Remote Sensing.

GIS Geography published a list of 100 uses and applications of remote sensing, where data from NASA’s Terra satellite appeared in over 10%.

Listed below are some examples of Terra data uses that made the list (numbered by their original order in the article from GIS Geography):

13. Identifying forest stands and tallying their area to estimate forest supplies (MODIS)

26. Fighting wildfires by planning firefighter dispatch (MODIS)

27. Monitoring air quality in the lower atmosphere (MOPITT)

38. Keeping tabs on the shift from rural to urban growth (MODIS)

39. Quantifying crop conditions with Normalized Difference Vegetation Index (NDVI from MODIS)

59. Monitoring active volcanoes using thermal remote sensing (ASTER, MISR, and MODIS)

66. Looking at the Earth as an art masterpiece NASA’s Earth as Art | NASA Visible Earth

70. Comparing climatic factors from past to present (MODIS, CERES, MOPITT)

75. Studying geology of the Earth’s surface (ASTER, MISR, MODIS)

77. Measuring albedo for Earth’s radiation budget (CERES)

83. Delineating watersheds using DEMs for hydrologists (ASTER)

85. Using a least-cost analysis and vegetation to understand wildebeest migration (NDVI from MODIS)

Read the whole list and learn more about each of the uses and applications of remote sensing at 100 Earth Shattering Remote Sensing Applications Uses from GIS Geography

NASA Langley Scientist Selected as 2015 AAAS Fellow

Portrait of Lin Chambers on blue background

Lin Hartung Chambers, a climate scientist and educator at NASA Langley Research Center in Hampton, Virginia, named a fellow of the American Association for the Advancement of Science. Credits: NASA Langley Research Center

Written by Chris Rink
NASA Langley Research Center, Hampton, VA

A climate scientist and educator at NASA’s Langley Research Center in Hampton, Virginia, has been named a fellow of the American Association for the Advancement of Science (AAAS), the world’s largest general scientific society.

The lead for education and communication at NASA Langley’s Science Directorate, Lin Hartung Chambers was among 347 members who were selected for their efforts to advance science or its applications in a scientifically or socially distinguished way.

As principal investigator for the MY NASA DATA project, Chambers makes NASA’s large collection of scientific data about the Earth more accessible to a wide audience, including both K-12 teachers and students, and the Citizen Science community. She is also the director of the Students’ Cloud Observations On-Line (S’COOL) Project, a program she created to use K-12 student data for validation of NASA’s Clouds and the Earth’s Radiant Energy System (CERES) satellite instrument cloud measurement products. Chambers was also a project scientist for the NASA Global Climate Change Education project working with a multi-agency community of climate change education funders and awardees.

The AAAS recognized Chambers for “For distinguished contributions to science education, particularly the coordination of students’ contributions to satellite data validation and improving the synergy of climate change education efforts.”

“It is a great honor to have my work recognized by my peers through AAAS,” Chambers said. “After nearly 19 years we continue to have enthusiastic participation from students ground-truthing satellite data, and we continue to evolve our activities to make their participation as rewarding as possible.”

Founded in 1848, AAAS is the publisher of the journal Science and includes 254 affiliated societies and academies of science serving 10 million people. The non-profit AAAS is open to all and fulfills its mission to “advance science and serve society” through initiatives in science policy, international programs, science education and more. The tradition of AAAS fellows began in 1874; members are considered for the rank of fellow if they are nominated and approved by their peers.

Chambers and the other new fellows will be presented with an official certificate and a gold and blue rosette pin representing science and engineering on Saturday, Feb. 13, from 8 a.m. to 10 a.m. at the AAAS Fellows Forum during the 2016 AAAS Annual Meeting in Washington, D.C. Chambers has a doctorate in aerospace engineering from North Carolina State University and received bachelor’s and master’s degrees in aeronautical engineering from Rensselaer Polytechnic Institute in Troy, New York. She has authored or co-authored more than 40 journal papers on science, engineering, and education and public outreach.

For more information about AAAS, visit:

www.aaas.org

For more information about NASA Langley, go to:

www.nasa.gov/langley