Year: 2020

Bighorn Fire north of Tucson, Arizona, on June 29
NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument imaged areas burned by the Bighorn Fire north of Tucson, Arizona, on June 29. Vegetation is shown in red and burned areas are shown in dark gray. It covers an area of 20 by 30 miles (33 by 48 kilometers). Credit: NASA/JPL-Caltech
› Larger view

From the vantage point of the Terra satellite, the instrument can detect the scarred land that the wildfire, burning north of Tucson, is leaving in its wake.


On the night of June 5, a lightning strike started the Bighorn Fire in the Santa Catalina Mountains north of Tucson, Arizona. Extremely dry vegetation and windy conditions caused the fire to spread quickly. By June 30, the multi-agency incident information system, InciWeb, reported that it had ballooned to more than 114,000 acres and that it was about 45% contained.

NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra satellite imaged some of the burned area on June 29. In this image, vegetation is shown in red and burned areas appear dark gray. It covers an area 20 by 30 miles (33 by 48 kilometers).

Efforts to contain the fire continue with 21 hand crews, 10 helicopters and dozens of fire engines deployed to the area. Smoke impacts to surrounding communities are being carefully monitored.

With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of about 50 to 300 feet (15 to 91 meters), ASTER images Earth to map and monitor the changing surface of our planet. It is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan’s Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products.

The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

The U.S. science team is located at NASA’s Jet Propulsion Laboratory in Southern California. The Terra mission is part of NASA’s Science Mission Directorate, Washington.

This story originally appeared on https://www.jpl.nasa.gov

News Media Contact

Ian J. O’Neill / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649 / 818-354-0307
ian.j.oneill@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
Written by Esprit Smith, NASA’s Earth Science News Team

MOPITT U.S. Principal Investigator, Helen Worden, along with MOPITT scientists, Sara Martínez-Alonso, Mijeong Park, and Laura Pan, published an article about how the National Center for Atmospheric Research’s (NCAR) Atmospheric Chemistry Observations and Modeling (ACOM) group is using MOPITT data to see the impact of COVID-19 on air quality in China. Read their full article from NCAR’s ACOM.

ACOM article link: https://www2.acom.ucar.edu/news/covid-19-impact-asian-emissions-insight-space-observations

Other media sources:

In order to improve the accuracy of data and gain insights that would be difficult to achieve with one instrument alone, researchers have started combining data from Terra’s five instruments: ASTER, CERES, MISR, MODIS, and MOPITT. The result, Terra Fusion, a new dataset and toolkit. Read more https://earthdata.nasa.gov/learn/articles/tools-and-technology-articles/introducing-terra-fusion

Dr. Kurt Thome, Terra Project Scientist was featured in a Data Chat – short, informal discussions with scientists, managers, and members of NASA’s diverse data-user community. Thome provides personal insights into how Terra data are being used around the world, along with a glimpse into how these data, products, and services may be used in the future. Read more https://earthdata.nasa.gov/learn/data-chat/data-chat-dr-kurt-thome.

What do you get when you have an Earth observing satellite mission that collects science-quality data from five instruments for more than 20 years? You get groundbreaking science, more than 20,000 peer-reviewed publications, and a critical understanding of how our planet works. In other words, you get NASA’s Terra mission. Read about how the instruments aboard NASA’s flagship Earth observing mission are compiling a monumental climate data record and what this means for you in “Terra: Five Instruments—One Monumental Data Record,” now available on NASA’s Earthdata website.